Цифровая схемотехника
Содержание:
- Почему учебный центр «Альянс» — для инженеров сервисцентров лучший шанс?
- Практика
- Техника безопасности
- Шаг 4: Стандартные или общие значения резисторов
- Закон Ома
- Измерение сопротивления
- Выполнение электромонтажных работ
- Школа Ремонта
- 7 причин, почему нужно участвовать:
- Основные токовые величины
- Udemy. Профессия «Мастер по ремонту стиральных машин» от А до Я
- Программа курса
- Микросхемотехника
- Системы автоматической защиты
- Цифровая схема
Почему учебный центр «Альянс» — для инженеров сервисцентров лучший шанс?
Учебный центр «Альянс» разработал курсы по ремонту телефонов и планшетов специально для мастеров практикующих ремонтников и инженеров сервисных центров. Поэтому и результаты будут несколько иными, чем от уроков для чайников.
Итак, наши курсы откроют перед Вами новые перспективы:
- обучение современным моделям телефонов, только актуальным знаниям, которые действительно полезны и работают на практике;
- индивидуальный подход к каждому нашему клиенту;
- возможность подобрать наиболее удобную форму курса: очно в нашем оборудованном классе или индивидуально в отдельной мастерской;
- основной акцент обучения мы делаем на практику ремонта самых популярных моделей телефонов;
- в сжатые сроки осваиваем обширный учебный материал и приобретаем практические навыки;
- с учащимися работают профессионалы своего дела, практикующие опытные преподаватели высшей категории с богатым практическим опытом работы инженеров сервисных центров;
- мы достигаем вместе вершин мастерства и профессионализма, дающими возможность вдохнуть в сломанные планшеты и смартфоны «вторую жизнь»!
Более того, наш учебный центр не зря провозглашает «индивидуальный подход к каждому» как одно из преимуществ. К нам может обратиться для обучения и частное лицо, мастер, который сам работает на себя и повышает свою квалификацию. Также сервисные центры по ремонту электроники и прочие корпоративные клиенты могут провести обучение своих сотрудников с нашими преподавателями. Те, кто не имеют возможности заниматься на базе нашего учебного центра в Москве, могут присоединиться к учебной группе дистанционно. Множество нюансов может останавливать человека, который хочет учиться: нет времени, денег, далеко ездить, лениво в конце концов…. Но наши преподаватели действительно профессионалы высокого класса. Если Вы хотите учиться – мы гарантируем результат! Для этого найдётся и время, и средства, и мотивация. И все это благодаря совместным усилиям и профессионализму коллектива наших курсов. Обратившись к нам, Вы обязательно освоите всё необходимое для качественного ремонта и восстановления телефонов или планшетов любой модели и марки!
Специальные курсы для персонала организаций
Занятия с выездом репетитора к клиенту
Обучение созданию сайтов с нуля
Оптимизация сайтов для роста позиций в поиске
Создание и настройка рекламы на поиске
Настройка рекламных кампаний в поисковике
Практика
До этого момента в статье была сплошь теория. Сейчас я предлагаю закрепить ее практической частью и собрать восьмибитный сумматор. Нам потребуется пара беспаечных макетных плат, несколько DIP-переключателей, светодиоды для индикации, токоограничивающие резисторы на 10 кОм и пара микросхем 74HC283.
Серия 74xx включает в себя микросхемы самого разного назначения. Это могут быть как сборки логических вентилей (например, 74HC04 — шесть инверторов в одном корпусе), так и полноценные АЛУ (74HC181). Помимо комбинационных схем, там есть и последовательностные: триггеры (74НС74), регистры (74НС373) и счетчики (74НС393).
Чтобы ориентироваться во всем этом номенклатурном разнообразии, я рекомендую не скачивать документацию на каждую микросхему в отдельности, а сразу найти целый справочник по всей серии. Например, есть справочник Texas Instruments в PDF.
Расположение выводов у микросхемы 74HC283 можно найти на странице 176 справочника, принципиальную схему и таблицы истинности смотри на страницах 390–391. И хотя это сумматор всего лишь на четыре бита, тут есть функция ускоренного переноса, а сами микросхемы можно объединять, собирая сумматоры на 8, 16 или даже 32 бит.
Хорошо видно, что схема здесь несколько отличается от той, что мы вывели ранее. В этом нет ничего необычного, одну и ту же функцию можно реализовать несколькими способами, и в производстве зачастую используют тот, который дешевле (по элементам) и лучше подходит для техпроцесса.
При этом все равно осталось некоторое сходство — его можно заметить при внимательном изучении. Например, элементы XOR от полусумматоров располагаются непосредственно перед выходом для значений каждого из разрядов.
Кроме того, можно понять, что значение для переноса вычисляется параллельно со значениями разрядов — для этого в микросхеме и присутствуют «лишние» элементы. Пожалуй, это самая сложная часть в статье. Поэтому, если у тебя возникли трудности, попробуй рассмотреть схему ускоренного переноса отдельно — это ИС 74HC182 на с. 338 (вот она, польза от полноценного справочника).
Сложение
Теперь, когда принцип работы микросхемы и назначение каждого ее вывода для нас не составляет секрета, можно собирать рабочий сумматор на восемь бит на макетных платах. Потребуется целый ворох проводов и перемычек, чтобы соединить все компоненты, так что главное здесь — быть внимательным и не допускать ошибок.
Как правило, значения в АЛУ попадают из регистров — самого быстрого типа памяти в компьютере. Здесь же я для удобства использую пару DIP-переключателей (левый верхний угол), чтобы можно было легко задавать нужные значения. По сути, это регистры А и В нашего протокомпьютера.
К сожалению, производитель переключателей явно не рассчитывал на такое применение, поэтому нумерация битов в каждом регистре мало того что начинается с единицы, так еще и идет в «неправильном» порядке, слева направо! Учитывай это, когда будешь работать со схемой.
Пара 74НС283 располагается по центру на нижней макетке, а результат операции отображается на линии из светодиодов (правый верхний угол). В левом нижем углу роль источника питания выполняет преобразователь USB — UART (другого способа подать стабильные 5 В я в тот момент не нашел).
Если схема была собрана без ошибок, то, задавая двоичное представление чисел на переключателях, ты сможешь наблюдать значение суммы на светодиодах. Примерно как на картинке выше.
Вычитание
Удивительно, но такую схему без каких-либо изменений и доработок можно использовать и для вычитания. Да, раньше я не говорил об этом ни слова, но такое действительно возможно. Если использовать представление отрицательных чисел в дополнительном коде, нам никак не нужно переопределять операцию сложения — все будет работать на имеющемся железе.
Наверняка ты уже представляешь, как на уровне цифровой схемы из положительного числа можно сделать отрицательное (в дополнительном коде). Действительно, достаточно только к каждому биту применить операцию NOT, а затем подать на вход сумматора вместе с единицей. Как видишь, подобное представление неочевидно с точки зрения человека, но очень удобно для реализации из набора логических вентилей.
Техника безопасности
При работе с электрическими сетями или приборами соблюдают такие правила:
- Перед началом эксплуатации или ремонта оборудования изучают инструкцию. В разделе безопасности прописаны недопустимые действия, приводящие к замыканию и поражению током.
- Устройства необходимо обесточивать. После этого оценивают состояние изоляции проводов. При выявлении повреждений оголенные места закрывают изолентой.
- При невозможности обесточивания электрической сети работают в диэлектрических перчатках, обуви на резиновой подошве и специальных очках.
- Доступ к распределительным щитам и электроустановкам начинающим специалистам запрещен.
- Нельзя касаться лишенных изоляции проводов руками. Для поиска фазы используют мультиметры, индикаторные отвертки и другие инструменты.
Шаг 4: Стандартные или общие значения резисторов
Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов. Было бы малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом. У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.
Терпимость 20% E6,
Терпимость 10% E12,
Терпимость 5% E24 (и обычно 2%-я терпимость),
Терпимость 2% E48,
E96 1% терпимости,
E192 0,5, 0,25, 0,1% и выше допуски.
Стандартные значения резисторов:
Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68
E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82
E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91
E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953
E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976
E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988
При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.
Продолжение следует
( Специально для МозгоЧинов #Complete-Guide-for-Tech-Beginners» target=»_blank»>)
Закон Ома
Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.
Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:
- Сила тока: I = U/R (ампер).
- Напряжение: U = I x R (вольт).
- Сопротивление: R = U/I (ом).
Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.
Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.
Измерение сопротивления
черный провод подключить к разъему «COM»;
красный провод подключите к разъему красного цвета;
установите ручку переключателя — ожидаем получить значение примерно 22 кОм, поэтому установите на значение 200 кОм;
металлические концы проводов мультиметра касаются выводов резистора (неважно каким концом какой вывод);
считаем значение — для этого резистора сопротивление 22.1 кОм;
выключаем прибор (не забывайте).
Измерьте сопротивление резистора омметром
Как и в случае с батареями, здесь значение, измеренное мультиметром, отличается от номинала проверяемого элемента. Золотая полоса на резисторе означает допуск 5%.
22 кОм х 5% = 1.1 кОм
Следовательно, диапазон сопротивления для этого резистора может составлять от 20,9 кОм до 23,1 кОм. Теперь подключим пласту, батареи в холдере и резистор, как на фото ниже:
Электронная схема простейшая подключена к макетной плате
В электронике схемы используются для иллюстрации соединений между отдельными элементами. В нашем случае это будет выглядеть так:
Электрическая схема простейшая
Символ, обозначенный как B1, — это батарейки, обеспечивающие общее напряжение 4 x 1,5 В = 6 В. А 22 кОм резистор помечен символом R1. По закону Ома:
I = U / R
I = 6 В / 22 кОм
I = 6 В / 22000 Ом
I = 0,000273A
I = 273 мкА
Теоретически ток в схеме должен составлять 273 мкА. Но что сопротивление резистора может изменяться в пределах 5%. Напряжение обеспечивается батареями также не номинальные 6 В, и оно будет зависеть от уровня заряда батареи. Давайте рассмотрим фактическое напряжение, обеспечиваемое 4 батареями по 1,5 В.
Выполнение электромонтажных работ
Создание электрических сетей состоит из нескольких этапов:
- проектирования;
- подготовки материалов и инструментов;
- прокладки проводки.
Необходимые инструменты
Для работы потребуются:
- фазоискатель;
- плоскогубцы;
- кусачки;
- ножи;
- изоляционная лента;
- отвертки;
- мультиметр для проверки сетей.
Удаление виниловой изоляции с проводов (зачистка)
Процедура сопряжена с некоторыми сложностями. Ее нужно проводить так, чтобы не повреждалась токопроводящая жила. Иногда каждый проводник защищается виниловой изоляцией. Набор таких шин помещается в еще одну оплетку. В таком случае нужно разрезать верхний слой, не повреждая внутренней изоляции. Для снятия оплетки используют тупой нож, для зачистки медных или алюминиевых жил — острый.
Изоляция
Места соединения или повреждения оплетки тщательно изолируют. При электромонтаже для этого используют специальную ленту. Для начала жилы изолируют раздельно, затем вместе. Нанесенный на изоленту клей должен обеспечивать прочную фиксацию. Материал надежно приклеивают к виниловой оплетке на ширину, препятствующую отслаиванию или сползанию.
Прокладка проводки
Современный провод укладывают без дополнительной изоляции. При проведении работ учитывают, что:
- места соединений оставляют в свободном доступе;
- провод не должен подвергаться механическим воздействиям;
- нужно исключать влияние агрессивных факторов на места соединений;
- нельзя задевать проводку инструментом при выполнении каких-либо работ.
При прокладке кабелей под землей используют бронированный канал. Гидроизоляция не является обязательной, поскольку провод нечувствителен к воздействию влаги.
Школа Ремонта
В компании обучение с нуля длится 5 дней. Потом вы становитесь специалистом и начинаете ежемесячно зарабатывать на ремонте от 60 тыс. руб.
На курсах предлагается:
- Отлаженное обучение. Теории уделяется минимум внимания. Ставка делается на практические занятия. Поэтому обучение ведется на реальных примерах
- Отработка навыков. Все полученные навыки отрабатываются на практических занятиях. Ученики изучают бытовую технику и решают возникшие проблемы
- Трудоустройство. У компании много партнерских сервисов. Поэтому достойным ученикам гарантируется трудоустройство в таких центрах
Цены за обучение такие же, как и в Школе РБТ.
Занятия проводятся в специально оборудованных классах, а выпускникам выдается диплом, подтверждающий его квалификацию.
7 причин, почему нужно участвовать:
- Знакомство с новыми темами.
- Возможность сразу же применить знания на практике.
- Уже на первых занятиях вы сможете самостоятельно спроектировать и собрать электронное устройство, и не одно!
- Вам предстоит выполнить небольшой исследовательский проект и защитить его в конце курса (а мы поможем подготовиться). После этого Вы сможете отчитаться выполненным проектом, например, у себя в школе, а лучшие проекты мы будем рекомендовать на всероссийский конкурс «Учёные будущего», проводимый МГУ, а также на зарубежные конференции.
- Вы сможете работать дома, что сэкономит Ваше время.
- Участники курса автоматически попадают на конкурсный отбор в российскую команду на конференцию мейкеров в Тайване.
- Все информационные материалы предоставляются бесплатно.
Записаться сейчас!
Основные токовые величины
При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока, измеряемой в амперах.
Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.
Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление, измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.
Udemy. Профессия «Мастер по ремонту стиральных машин» от А до Я
Здесь занятия ведет Шухрат Хадыходжаев. Он – основатель центра Fixer Plus. Это сервис по ремонту стиральных машин. Дипломированный специалист является действующим мастером и активным блогером. 14 лет трудится в данной области и с нуля обучил профессии 35 мастеров.
Шухрат предлагает ученикам курс с общей продолжительностью от 4,5 часов. Сюда входят лекции по:
- Для начала работы. Необходимая база это 3 лекции с продолжительностью в 12 минут
- Устройству стиральной машины – 8 (34 мин.)
- Диагностике неисправностей мультиметром – 4 (35 мин.)
- Разборке стиральной машины – 8 ( почти 2 часа)
- Работе с паяльником и электронные модули управления – 3 (почти час)
- Продвижение на онлайн площадках – 1 (23 мин.)
Курс стоит $14 и предназначен для мужчин, желающих:
- Открыть сервисный центр
- Начать бизнес
- Разобраться в собственной технике
- Увеличить заработок
Программа курса
- Вводное занятие. На первом занятии учащиеся познакомятся с элементной базой, устройством беспаечной макетной платы и основными принципами соединения компонентов, а также научатся читать принципиальные электрические схемы. На практике данный материал будет закреплен сборкой электрической схемы включения светодиода.
- Понятие транзистора и основные схемы включения. Во время второго занятия слушатели узнают основные режимы работы транзистора, а также соберут под руководством преподавателя несколько рабочих схем.
- Основы пайки. Третье занятие посвящено практике пайки. Будут рассмотрены вопросы подготовки инструмента к работе, технике безопасности при работе с паяльником, а также обеспечения надежных электрических соединений.
- Введение в аналоговые микросхемы. Таймер 555. На четвертом занятии учащиеся познакомятся с логическими микросхемами и микросхемой таймер555, основными схемами их включения.
- Изучение программы DipTrace. На данном занятии планируется продемонстрировать работу с основным программным обеспечением для проектирования печатных плат. Будет приведен полный цикл проектирования от разработки принципиальной электрической схемы до печатной платы.
- Основы цифровой электроники. Логические микросхемы. Знакомство с законами алгебры логики и основами построения цифровых устройств. Сборка логического анализатора.
- Навыки презентации. Будут затронуты основные моменты, которые должны быть освещены учащимися во время презентации своего проекта. Подробно будут рассмотрены вопросы содержания доклада и представления результатов в виде демонстрации функционирования готового устройства, так и в виде файла с описанием проделанной работы.
В процессе занятий будут даваться небольшие домашние задания, выполнение которых будет полезно для лучшего усвоения материала.
Записаться сейчас!
Микросхемотехника
Радиотехника для начинающих
Это часть микроэлектроники, которая занимается исследованиями и разработкой электрических структурных построений цепей в интегральных микросхемах. Они представляют собой микроэлектронные изделия, выполняющие функции преобразования, обработки сигналов и накопления информации.
Важно! Микросхемы имеют высокую плотность соединённых элементов на площади в несколько мм2. Их элементы не могут быть отделены от кристалла и подложки
Микросхемотехника
Проектированием и монтажом интегральных микросхем (ИМ) занимаются схемотехники. ИМ бывают нескольких видов:
- плёночные – все элементы и межэлементные компоненты выполнены в виде плёнок;
- гибридные – содержат кристаллы;
- аналоговые – предназначены для обработки сигналов, изменяющихся по закону непрерывной функции;
- цифровые – обработка сигналов по закону дискретной функции.
Системы автоматической защиты
Электросеть несет 2 вида угроз:
- Мощность бытовой проводки достаточна для возгорания материалов, используемых при отделке помещений. Замыкание в сети приводит к неконтролируемому повышению силы тока и воспламенению. Свести вероятность возникновения такой ситуации к нулю невозможно, однако ее снижают путем введения в цепь автоматического выключателя. При повышении параметров тока пластина устройства деформируется, высвобождается пружина, которая размыкает контакты. Автомат не реагирует на импульсы пускового тока.
- Нулевой провод связан с землей, фазовый находится под напряжением по отношению к ней. Между таким проводником и заземленными предметами возникает ток. Поражение человека электричеством, образующимся между 2 сетевыми кабелями, практически не опасно. Однако при некоторых условиях прохождения тока электротравма становится смертельной. Автоматические системы защиты следят, чтобы ток входил в один провод и уходил по другому. При появлении напряжения между фазой и заземленным предметом, например, телом человека, УЗО обесточивает сеть.
Цифровая схема
Типичная цифровая схема состоит из входов, выходов и логических элементов, также называемых вентилями. Сигналы поступают на входы схемы, преобразуются по определенным правилам внутри вентилей (об этом чуть ниже) и подаются на выходы.
В комбинационных схемах состояние сигналов на выходе зависит только от состояния на входе. В последовательностных схемах выход зависит не только от входа, но еще и от внутреннего состояния схемы
В любом случае важно понимать, что сигналы на выходе зависят от входа, не наоборот
В этой статье мы будем рассматривать только комбинационные схемы. Они проще для понимания и наглядней. Кстати, в отечественной литературе нет устоявшегося перевода для последовательностных схем. Кто-то называет их последовательными, кто-то предпочитает кальку с английского языка и использует термин «секвенциальные схемы» (sequential). Разницы нет никакой, но все равно учти это, когда будешь читать дополнительные источники.